

Integrated Avionics Aerial Application Technologies Public Health Forestry Agriculture

Variables and Interactions in Aerial Application

Automated Flow Control

AGDISP (AGricultural DISPersal) Model

High-speed precision onboard meteorology

Variables and Interactions in Aerial Application

Variables and Interactions in Aerial Application

January 31, 2006 a.m.

Standard Application Method

January 31, 2006 p.m.

Optimized Application Method

Executive Summary:

- Optimization strategies offset flight lines show deposit & droplet densities increase up to 2.8 fold
- Droplet densities >20 drops/cm2 would result in high efficacy against spruce budworm
- Improved deposition was achieved using the Wingman GX
- In some instances droplet densities per cm2 were increased by a factor of 10X